Table 6. XRD* sampling and analytical methods for crystalline silica | Item | NIOSH
Method 7500 | OSHA
Method ID-142 | MSHA
Method P-2 | MDHS 51/2 | |---------------------|---|---|--|---| | Silica polymorph | Quartz, cristobalite, tridymite | Quartz, cristobalite | Quartz, cristobalite | Quartz | | Sampler | 10-mm nylon
cyclone, 1.7 L/min;
Higgins-Dewell
cyclone, 2.2 L/min | 10-mm nylon
Dorr-Oliver
cyclone, 1.7 L/min | 10-mm nylon
Dorr-Oliver
cyclone, 1.7 L/min | Higgins-Dewell cyclone, 1.9 L/min | | Filter | 37-mm, 5-μm
PVC membrane | 37-mm, 5-μm
PVC membrane | 37-mm, 5-μm
PVC membrane | 25-mm, 5-μm
PVC membrane | | Volume | 400–1,000 L; total dust < 2 mg | 408–816 L; total dust < 3 mg | 400–1,000 L; total dust < 3 mg | \geq 456 L; total dust < 2 mg | | Filter preparation | RF plasma asher,
muffle furnace, or
filter dissolution in
THF | Dissolve filter in THF | RF plasma asher | None | | Redeposition | On 0.45-µm silver membrane filter | On 0.45-µm silver membrane filter | On 0.45-µm silver membrane filter | None | | Drift correction | Silver internal
standard | Silver internal
standard | Silver internal
standard | External standard (e.g., aluminum plate) | | X-ray source | Cu K_{α} ; 40 kV, 35 mA | Cu K_{α} ; 40 kV,
40 mA | Cu K_{α} ; 55 kV, 40 mA | Cu K_{α} ; 45 kV, 45 mA | | Calibration | Suspensions of SiO ₂ in 2-propanol (deposited on silver membrane filter) | Suspensions of SiO ₂ in 2-propanol (deposited on silver membrane filter) | Suspensions of
SiO ₂ in 2-propanol
(deposited on silver
membrane filter) | Sampling from a
generated
atmosphere of
standard quartz dust | | Proficiency testing | PAT | PAT | PAT | WASP | | Range (µg quartz) | 20–2000 | 50–160 (validation range) | 20–500 | 50–2000 | | LOD (µg quartz) | 5 (estimated) | 10 | 5 | 3 | | Precision | $\overline{RSD} = 0.08$ $50-200 \mu\text{g}$ | CV = 0.106 @
50–160 μg | CV = 10 % @
20–500 μg | CV = 5 % @ 50 μg | ^{*}Abbreviations: Cu = copper; CV = coefficient of variation (equivalent to RSD); $\overline{CV} = pooled$ coefficient of variation; $K_{\alpha} = electron$ ionization energy; kV = kilovolt(s); LOD = limit of detection; mA = milliampere(s); MDHS = Methods for the Determination of Hazardous Substances (Health and Safety Executive, United Kingdom); MSHA = Mine Safety and Health Administration; NIOSH = National Institute for Occupational Safety and Health; OSHA = Occupational Safety and Health Administration; PAT = proficiency analytical testing; PVC = polyvinyl chloride; PRSD = relative standard deviation; PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation; PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation; PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation; PRSD = relative standard deviation; PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation; PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation; PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equivalent to PRSD = relative); PRSD = relative standard deviation (equiva Table 7. IR^* sampling and analytical methods for crystalline silica | Item | NIOSH
Method 7602 | NIOSH
Method 7603 | MSHA P-7 | MDHS 37 | MDHS 38 | |-------------------------------|--|--|--|--|--| | Matrix | | Coal mine dust | Coal mine dust | | | | Sampler | 10-mm nylon
cyclone, 1.7 L/min;
Higgins-Dewell
cyclone, 2.2 L/min | 10-mm nylon
cyclone,
1.7 L/min;
Higgins-Dewell
cyclone,
2.2 L/min | 10-mm nylon
Dorr-Oliver
cyclone,
2.0 L/min | Higgins-Dewell
cyclone,
1.9 L/min | Higgins-
Dewell
cyclone,
1.9 L/min | | Filter | 37-mm filter; 5-µm
PVC or MCE
membrane | 37-mm filter;
5-µm PVC
membrane | 37-mm filter;
5-µm PVC
membrane,
preweighed | 37-mm filter;
5-µm PVC
membrane | 37-mm filter;
5-µm PVC
membrane | | Volume | 400–800 L; total dust <2 mg | 300–1,000 L;
total dust <2 mg | Not stated | ≥456 L; total dust <1 mg | ≥456 L;
total dust
<0.7mg | | Filter preparation | RF plasma asher or muffle furnace | RF plasma
asher or muffle
furnace | RF plasma asher | None | Muffle furnace | | Analytical sample preparation | Mix residue with
KBr, press
13-mm pellet | Redeposit on 0.45-µm acrylic copolymer filter | Redeposit on 0.45-µm acrylic copolymer filter | None | Mix residue
with KBr,
press 13-mm
pellet | | Standard | Polystyrene film | | Calibration | Quartz diluted in
KBr | Standard
suspension of
quartz in
2-propanol | Standard
suspension of
quartz in
2-propanol | Sampling from
a generated
atmosphere of
standard quartz
dust | Sampling from
a generated
atmosphere of
standard quartz
dust | | Proficiency testing | PAT | PAT | PAT | WASP | WASP | | Range
(µg quartz) | 10–160 | 30–250 | 25–250 | 10–1,000 | 5–700 | | LOD
(µg quartz) | 5 (estimated) | 10 (estimated) | 10 | Varies with particle size | Varies with particle size | | See footnote at end of table. | | | | (Continued) | | Table 7 (Continued). IR* sampling and analytical methods for crystalline silica | Item | NIOSH
Method 7602 | NIOSH
Method 7603 | MSHA P-7 | MDHS 37 | MDHS 38 | |-----------|----------------------|--------------------------------------|-----------------------------|--------------------------|---------------------| | Precision | RSD <0.15
@ 30μg | $\overline{RSD} = 0.098$ @ 100–500µg | CV = 5-10 %
@ 100-500 µg | $CV = 5 \%$ @ $50 \mu g$ | CV = 5 %
@ 50 µg | ^{*}Abbreviations: CV = coefficient of variation (equivalent to RSD, relative standard deviation); IR = infrared absorption; KBr = potassium bromide; MCE = methyl cellulose ester; MDHS = Methods for the Determination of Hazardous Substances (Health and Safety Executive, United Kingdom); MSHA = Mine Safety and Health Administration; NIOSH = National Institute for Occupational Safety and Health; LOD = limit of detection; PAT = proficiency analytical testing; PVC = polyvinyl chloride; RF = radio frequency; RSD = pooled relative standard deviation (equivalent to $\overline{\text{CV}}$, pooled coefficient of variation); WASP = Workplace Analysis Scheme for Proficiency. Table 8. Intralaboratory results for evaluation of XRD silica method | | Filter loading | | | |---|----------------|---------|--------| | Item | 69.4 μg | 98.4 μg | 204 μg | | Degrees of freedom | 12 | 11 | 12 | | RSD for sampling and analytical methods $\left(\%\right)^{*,\dagger}$ | 8.8 | 6.3 | 8.1 | Source: NIOSH, BOM [1983]. Table 9. Intralaboratory results for evaluation of IR silica method | | Filter loading | | | |--|----------------|--------|--------| | Item | 67.2 μg | 99.7μg | 161 μg | | Degrees of freedom | 10 | 12 | 11 | | RSD for sampling and analytical methods (%) *,† | 5.8 | 7.8 | 7.4 | Source: NIOSH, BOM [1983]. ^{*}RSD = relative standard deviation. RSD for sampling and analytical methods represents the RSD in mass estimates, accounting for intersampler and analytical variability. [†]Implications for XRD: Pooled filter levels and pump error (assumed to be <5%) indicate that the overall imprecision is as follows: Total RSD for sampling and analytical methods is 9.3%. Therefore, the upper 95% confidence limit on the accuracy (35 degrees of freedom) is 21%. ^{*}RSD = relative standard deviation. RSD for sampling and analytical methods represents the RSD in mass estimates, accounting for intersampler and analytical variability. [†]Implications for IR: Pooled filter levels and pump error (assumed to be <5%) indicate that the overall imprecision is as follows: Total RSD for sampling and analytical methods is 7.1%. Therefore, the upper 95% confidence limit on the accuracy (33 degrees of freedom) is 17%. Table 10. XRD method evaluation: concentration ranges bracketing applicable exposure limits for which the NIOSH accuracy criterion is met* $(\mu g/m^3)$ | | Filter loading | | | | |---------------------------|----------------|----------------|---------------|---------------------------| | Cyclone and sampling rate | 69.4 μg | 98.4 μg | 204 μg | Applicable exposure limit | | Nylon cyclone, 1.7 L/min | 85 | 121 | 251 | 100 | | GK2.69 cyclone, 4.2 L/min | 34 | 49 | 102 | 50 | ^{*}Eight-hour sampled masses are combined with results of NIOSH, BOM [1983].